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A non-numerical analysis is presented of chirality measures associated with a set of topolo- 
gically equivalent distance functions. A chirality measure is defined as the minimum distance 
that separates a chiral and an achiral object (first kind) or two enantiomorphs (second kind). 
On the basis of this analysis, as applied to triangles in the Euclidean plane, results of an earlier 
computational study of the Hausdorff  chirality measure are now fully understood. Analytical 
proof  has been provided for an earlier conjecture, based on a numerical analysis, that the union 
of enantiomorphous triangles is achiral under conditions of maximal overlap. Geometric para- 
meters for the most chiral triangle, as determined by a family of three measures of the first 
kind, are found to differ substantially from those determined by the corresponding measures of 
the second kind; none of these extremal triangles is degenerate. 

1. Introduction 

It has been recognized [1] that measures designed to quantify chirality fall into 
two classes: those that gauge the extent to which a chiroid differs from an achiral 
reference object (measures of the first kind) and those that gauge the extent to 
which two enantiomorphs differ from one another (measures of the second kind). 
Among the latter, the Hausdorff chirality measure [1,2] was singled out as the gen- 
eral method of choice because of its broad applicability, which extends to objects 
that are embedded in higher-dimensional spaces, such as one- or two-dimensional 
objects in Euclidean 3-space (E 3) or one-dimensional objects in the plane (E2), and 
to continuous as well as to discrete sets (with the latter representing, in a chemical 
context, the array of nuclear positions in a rigid molecular model). 

The Hausdorff  distance h(Q, Q') between two sets Q and Q' is the smallest 
number 6 that has the following two properties: i) a spherical ball of radius 6 cen- 
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tered at any point of Q contains at least one point of Q', and ii) a spherical ball 
of radius ~ centered at any point of Q' contains at least one point of Q. The Haus- 
dorff chirality measure f (Q)  for enantiomorphous sets Q and Q' is given by eq. 
(1), where hmin(Q, Q/) corresponds to the position of optimal (i.e., maximal) 
overlap and the diameter d(Q) is the largest distance between any two points in 
Q. 

f(Q) = hmin(Q, Q~)/d(Q). (1) 

This measure, which provides a numerical value for the degree of chirality of 
Q, is similarity-invariant, normalized in the interval [0,1], and zero if and only if 
Q is achiral. The diameter may be assigned unit length without loss of general- 
ity; eq. (1) then reduces to eq. (2): 

f(Q) = hmin(O, Or). (2) 

In previous studies [1,2], the degree ofchirality of triangles and tetrahedra, repre- 
sented as physical objects in E 3 consisting of unit masses centered at the three and 
four vertices, respectively, was determined by a numerical method in which a multi- 
dimensional hypersurface was explored by standard computational means: differ- 
ent superimpositions of Q and Q', obtained by translation-rotation of one 
enantiomorph relative to the other, led to the global minimum and hence to an esti- 
mate off(Q).  In the present paper we show that the salient results of these studies 
can be rationalized in light of a non-numerical analysis, that other distance func- 
tions (metrics) are capable of yielding results similar to those obtained in our pre- 
vious work, and that measures of the first kind can be developed for each of these 
metrics, including the Hausdorff measure. For reasons of convenience and simpli- 
city, we have restricted our analysis to triangles in E 2, represented by vertices as 
sets of points. 

Underlying all chirality measures X is the concept of a distance, either one 
between a chiral and an achiral object (first kind), or one between two enantio- 
morphs (second kind). A relevant class of distance functions is defined by eq. (3) 
(see [3]): 

Dp(dA, dB,dC) = (~A + ~B + ~C) 1/p , (3) 

where dA, dm dc denote the distances from the vertices A, B, C of a given triangle 
to the nearest (neighboring) vertices of the enantiomorph or to the nearest vertices 
of an achiral reference object. The associated chirality measure is given by eq. (4): 

Xp = min{Dp(dA, dB, dc)}. (4) 

A family of topologically equivalent metrics may be derived from eq. (3). For 
p = 1 andp = 2, eq. (5) and (6) apply: 

D1 (dA, dm dc) = dA +dB + dc,  (5) 
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= d 2 ) 1/2 D2(dA, dB, dc) (d~ +d~  + c " (6) 

As p ~ oo, Dp(dA, dB, dc) converges to Do~ (dA, dB, dc). It is easily seen that if, for 
example, dA >/dB, dc 

Doo(dA, dB, dc) = lim Dp(dA, dB, dc) = dA. (7) 
f l  -"~ o o  

Hence, 

Doo(dA, dB, dc) ----- max{dA, dB, dc}. (8) 

The Hausdorff distance h(Q, Q') is therefore seen to be a special case (eq. (8)) in 
the class represented by eq. (3). In what follows we analyze chirality measures of 
both kinds for different metrics Dp. 

2. Chiral i ty  measures X~ of  the second kind 

Given a normalized triangle, a chirality measure X~ of the second kind is 
defined, according to eq. (4), as the global minimum of function (3), calculated at 
the optimum superimposition of the enantiomorphs. For a triangle ABC (with 
sides a<b<c  = 1) and its enantiomorph A'ffC', there exist only three possible 
classes of arrangements of vertices, and hence only three classes of optimum super- 
impositions. 

Class I: At least two vertices of a given triangle share the same nearest neighbor- 
ing vertex of the enantiomorph. Of all possible arrangements of this type, the mini- 
mum distance is reached when vertices A and A' with the smallest angle are placed 
on the shortest sides, B'C' and BC, respectively (fig. 1). Any change in the mutual 
position of the two triangles that displaces A or A' out of the respective side will 
increase the distances between vertices, and hence the distance Dp. The particular 
optimum position of the vertex on the side depends on the choice of the Dp metric, 

C C '  

I 
whichever 

A is less 

~'X r/ - I 

B B, 

Fig. 1. 
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but in all cases the position of A on B'C 1 is the same as (i.e. mirrors) that of A' on 
BC. Therefore, in optimum superimpositions of this type, the unions of enantio- 
morphs have axial symmetry, and are thus achiral. 

Class II: Each vertex of a given triangle has only one nearest neighboring vertex 
of the enantiomorph which is its equivalent (fig. 2). For this class of superimposi- 
tions, Dp is determined by the distances between three pairs of equivalent vertices: 
A - A  I, B - i f ,  C - C  t. Of all possible arrangements of this type, the minimum distance 
is reached when links A A  ~, B ~  and CC I are parallel to each other. Any shift of one 
of the component triangles in the orthogonal direction simultaneously stretches 
all links and hence increases Dp. This superimposition is obviously achiral, with the 
symmetry axis orthogonal to the links and passing through their midpoints. 

Class III: Similar to class II, but with one equivalent and two nonequivalent ver- 
tices as nearest neighbors (fig. 3). Depending on which is the equivalent pair, we 
have three subclasses: 

(IIIA) A - i f ,  B - A  t , C - C ;  
(IIIB) A - A  1, B - C ,  C-Br;  
(IIIC) A - C ,  B - B  I, C - A  1. 

A rough estimate of the minimum value of the function Dp for class IIIA can be 
obtained from the superimposition of enantiomorphs shown in fig. 4. As seen 
from this figure, dA =dB = b - a and dc = 0. Substitution in eq. (3) yields 

IIIA Op ~, 21/P(b - a) (9) 

B, 

A, 

G 

B 
Fig. 2. 
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A A" 

B' \ ~  t / /  B 

C" C 

Fig. 3. 

and since lim 21/p = 1 
p---~ oo  

D nIA ~ b - a .  

Similarly, for class IIIB we have 

D InB ~ 2 1 / p ( c -  b) ,  

D I I I B ~ c _ b ,  
oo  

and  for class I I IC 

D IIIc ~ 21 /P(c -  a) ,  (13) 

D ~  m ~ c - a .  (14) 

(10) 

(11) 

(12) 

N o t e  that ,  in the chosen convent ion,  Dip connotes  the m i n i m u m  value of  Dp for 
class i. As seen f rom eq. (9)-(14), class I I IC  can be neglected, since c > b > a ,  and  
h e n c e c -  a > c -  b a n d c -  a > b  - a. 

A A" 

C'  C 

Fig. 4. 
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Though the very existence of classes I-III is determined by the mutual arrange- 
ment of the vertices of the enantiomorphs, the particular optimum superimposi- 
tions of the enantiomorphs and the specific values ofchirality measures depend on 
the choice of the Dp metrics, and are discussed below, starting with the Hausdorff 
measure. 

2.1. HAUSDORFF MEASURE X'~ 

2.1.1. Optimum superimposition for classes Iand H 
For optimum superimpositions in class I, vertex A ~ lies on side BC. This means 

that the sum d~ + dc = a (see fig. 1), and hence the minimum of function D ~  (eq. 
(8)) is reached at 

dA = dB = dc = a/2, (15) 

i.e., when vertices A and A' are positioned at the midpoints of sides B'C and BC, 
respectively. Any other superimposition will increase at least one of the d's and 
hence D~.  Substitution ofeq. (15) into eq. (8) gives 

D~ =a/2  (16) 

as the minimum distance for class I. 
In class II, the minimum of D~o corresponds to a superimposition in which the 

longest sides, AB and A~ff, of the enantiomorphs are parallel, vertices C and C t lie 
on A~B ~ and AB, respectively, and links AA ~, Btf,  and CC are orthogonal to AB 
and A~B ~ (fig. 5). In this case 

dA = dB = dc = hc ,  

where hc is the smallest height of the triangle. Hence 

D ~  = h c .  (17) 

Any other superimposition will increase one of the d's and hence Do~. 

2.1.2. Chirality map of the shape space 
It has been shown [4] that all normalized, chirally related (i.e., homochiral) trian- 

gles can be represented in a construction in which two vertices, A and B, are located 
at (1/2, 0) and ( -1 /2 ,  0), respectively, while the third, C (x, y), maps into the 
region bounded on two sides by coordinate axes and on the third by the arc of the 

B' C A" 

B C' A 

Fig. 5. 
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circle centered at point A (fig. 6). Region OBR of the coordinate plane forms a 
shape space, every internal point of which represents a unique chiral triangle. 
Boundaries BR and OR represent achiral triangles, boundary BO represents degen- 
erate triangles with three collinear vertices, and point R (0, x/3/2) represents the 
regular triangle. 

Given a chiral triangle, four different equations, (10), (12), (16), and (17), can 
be used to calculate the minimum distances D~ between enantiomorphs. Accord- 
ing to eq. (4), the chirality measure X~ is the smallest of the four D i ' s :  

tt . I II  ] - ) I l i A  D~}IIIB 
X~ = mm{Doo, Doo, ~oo , 

One may therefore anticipate four subspaces in the shape space: 

Region I: X~ = D~. 
Region II: X~ = D~. 

I l i A  RegionlIIA: X~ = D~ . 
I I IB  RegionlIIB: X~ = D~ . 

The interregion boundaries are defined by the condition of equality for the respec- 
tive i , I I I  D~ s. Thus, for the I/II boundary, equating D~ (eq. (16)) and D~ (eq. (17)) 
gives 

a/2 = hc. 

C, (x,y) 

a i" 

R (0,q3/2) 

~ b 

B (-~/2, O) 0 A (1/2, O) 

Fig. 6. 
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Taking into account that, as seen from fig. 6, 

a = [(1/2 + x) 2 + )'211/2 

and 

hc = y ,  

one obtains the following equation for the I-II boundary line: 

y = (x + 1 /2) /v~ .  

This is a straight line that passes through point B ( -1 /2 ,  0) and forms an angle of 
30 ° with the x axis. 

Similarly one can derive analytical equations for the remaining boundary lines. 
The resulting diagram, showing the four regions of the shape space, is presented in 
fig. 7. Fig. 8 shows the chirality map of the shape space. The contour lines represent 
equally spaced levels of constant chirality X. As follows from eqs. (10), (12), (16), 
and (17), these are 

Region I: arcs of circles centered at point B 

(x + 1/2) 2 +y2 = (2x)2. 

Region II: horizontal lines 

Y = X .  

R 

B 0 

Fig. 7. 



iV, Weinberg, K Mislow / Chirality measures 435 

irl 

/ 

i 

I 

/ 

) 

B O 

Fig. 8. 

Region IIIA: arcs of hyperbolas with foci at points B and A 

x 2 y2 
~---1. 

(X/2) 2 1 / 4 -  (X/2) 2 

Region IIIB: arcs of circles centered at point A 

( x - 1 / 2 )  2 + y 2 = ( 1 - X )  2. 

If fig. 8 is seen as the projection of a three-dimensional map, the boundary lines 
may be thought of as ridges that represent triangles with a relatively high degree of 
chirality. These ridges separate valleys (regions) of relatively low chirality, and 
the degree of chirality along the ridges increases from the corners of the map 
(points O, B, and R) toward the center (points S and T in fig. 7). These results serve 
to rationalize a previously unexplained observation. In our earlier work [1] we 
had computed the Hausdorffchirality measuref(Q) for triangles, over the whole of 
the shape space, on a 0.02 unit grid along the x and y axes. The values of the func- 
tion were represented as a density plot by different shadings, with darker shadings 
indicating higher values. An examination of the published plot (fig. 5 in [1]) reveals 
the faint presence of dark streaks leading from the corners of the map to the cen- 
ter. Fig. 9 displays the same map at higher density, on a 0.005 unit grid. The dark 
streaks are now clearly displayed. Comparison between fig. 8 and 9 shows that the 
heretofore unexplained high-density streaks match the boundary lines calculated 
in the present work. 
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0.8 

0,7 

0,6 

0,5 

0.4 

0.3 

(1,2 

O, 1 

-0,5 4},4 -0.3 -0.2 0 .  l 0 ,0 

Fig. 9. 

The maps in fig. 7 and 8 show the existence of three triple points, T, S, and B, 
at the junctures of three regions. The point at B represents a degenerate isosceles 
triangle (b = c, a = 0). The point at T has the highest degree ofchirality and hence 
represents the most chiral triangle. One can roughly estimate the parameters of 
this triangle from the condition (triple point of I, IIIA, IIIB): 

D L = D IIIA = D IIIB 
- - O O  - -{30  " 

From eq. (10), (12), and (16) it follows that 

a / 2 ~ b - a . . ~  1 - b .  

Hencea  ~ 1 /2andb ~ 3/4; 
and c~ ~ 29 °,/3 ~ 47 °, 7 ~ 1 ""°" " u,+ , X~ ~ 0.25. 

The exact parameters for this triangle are reported in section 2.1.4. 

2.1.3. Symmetry of the union of enantiomorphs in their optimum superimposition 
As mentioned above, the union of the enantiomorphs in their optimum superim- 

positions for classes I and II (fig. 1 and 5) has axial symmetry. In order to prove 
the same for class III, we start with the superimposition of fig. 4. This is not an opti- 
mum superimposition yet, since we can decrease the distances between nonequiva- 
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lent vertices, BA'  and B~A, by increasing the distance CC' until they become equal 
(fig. 3): 

dA = da = dc.  (18) 

Three parameters now define the superimposition: the C C  1 link length, L, and two 
rocking angles, 0 and 0 r (fig. 10). As seen from fig. 10, 

dE = (ABe) 2 = a 2 + b 2 + L 2 + 2ab cos(7 + 0 +/7) 

+ 2L[b cos(7 + 0 ~) Jr a cos 0], (19) 

d~ = (BA')  2 = a 2 + b 2 + L 2 + 2ab cos(3' + 0 + 0 ~) 

+ 2L[b cos(7 + 0) Jr a cos 0~], (20) 

dc = (CC')  = L. (21) 

Subtracting eq. (19) from eq. (20) and taking into account condition (18), we have 

ooi (o o, ) d 2 - d 2 = 4 L s m ~  b sin 7 + - -  + a  s i n a i  = 0 .  (22) 

Eq. (22) has two solutions 

0 = 0' (23) 

and 

b sin 3' 
0 = - Y  - arctan b cos 3' + a 

The first of these corresponds to smaller values of dB and da and hence is the solu- 
tion of choice. 

It is obvious from fig. 10 that, under condition (23), the union of enantiomorphs 
has axial symmetry. 

A A" 

B' \ x ~  / / /  B 

b 

C '  0 

Fig. 10. 
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In our previous, computational exploration of the shape space for triangles [1], 
it was found that three different optimized superimpositions of the most chiral tri- 
angle and its enantiomorph yielded the same value off(Q) (eq. (2)) within the error 
limits of the calculation. It was also observed that, in all three orientations, a line 
of reflection passes through the region of overlap (fig. 6 in [1]); that is, all three 
orientations have axial symmetry. Both observations are now fully understood. 
First, the three different orientations correspond to the three classes of superimpo- 
sitions whose regions meet at T in fig. 7; specifically, with reference to fig. 6 in [1], 
the orientations depicted at the top left, top right, and bottom of that figure corre- 
spond to superimpositions of types IIIA, IIIB, and I, respectively. Second, the 
proof herein presented that, under conditions of optimal overlap, superimpositions 
in classes III and I yield achiral unions rationalizes the previously observed numer- 
ical results. 

2.1.4. Optimum superimposition for class I l l  and the exact solution for the most 
chiral triangle 

It is seen from eq. (19) and (20) that dA =dB at any L = dc and 0 = Y. In order 
to find the optimum solution we have to find the minimum dA with respect to 0 at a 
given dc and then put it equal to dc. 

Differentiation ofeq. (19) with 0 -- # gives 

2ab sin("/+ 20) + L[b sin(7 + 0) + a sin 0] = 0. (24) 

At the same time, condition (18), in combination with eq. (21) and (23), reduces 
(19) to 

a 2 + b 2 + 2ab cos(')' + 20) + 2L[b cos('), + 0) + a cos 0] = 0. (25) 

Eq. (24) and (25) determine the optimum values of 0 and L. L can be excluded 
from these equations to give eq. (26): 

4ab sin(7 + 20) a 2 + b 2 + 2ab cos(7 + 20) 
b s i n ( ' ) ,+ 0 )+a  sin 0 =  b c o s ( 7 + 0 ) + a  cos 0 ' (26) 

which can be easily reduced to a cubic equation in tan 0. The optimum 0 thus found 
can then be substituted in eq. (24) to give L. By virtue of (8), (18), and (21), D~  IA 
is equal to this optimum L, and hence eq. (24) can be rewritten as 

2ab sin('), + 20) (27) 
DImlIA = -- b sin(')' + 0) + a cos 0 " 

Together with eq. (26), eq. (27) determines the exact solution for D~  IA in the region 
IIIA. Similarly, 

D~ m = 2bc sin(o~ + 20) (28) 
c s i n ( a + 0 ) + b c o s  0 '  
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4bc sin(a + 20) b 2 + c 2 + 2bc cos(a + 20) 
c s i n ( a + 0 ) + b  s i n 0 =  c c o s ( a + 0 ) + b  cos 0 (29) 

We use eq. (16), (17), (26)-(29) to find the most chiral triangle in the Doo metric 
(T in fig. 7): a = 21.02 °,/3 = 43.69 °, 3' = 115.29 °, X"oo = 0.1983. The calculated 
parameters are in excellent agreement with the earlier numerical solution ([1]): 
c~ ~ 21.5 °,/3 ~ 44.2 °, 7 ~ 114.3 °, f ( Q )  = 0.196, 0.197, 0.201 for the three orienta- 
tions in fig. 6 of [1]. For completeness we note that the chiral triangle represented by 
triple point S in fig. 7 has the following parameters: a = 14.75 °, /3 = 30.00 °, 
3' = 135-25°,Xoo = 0.1808. 

2.2. EUCLIDEAN MEASURE X~ 

2.2.1. Optirnum superimpositions for  classes l and H 
In this case condition (15) is no longer valid and we need to find the optimum 

superimposition by direct minimization of the distance function (6). As is ~een from 
fig. 1, there are two equivalent solutions for class I that give the same value of the 
DE distance, namely 

dA =dB < d c  = a - d A 
and 

dA = d c  < d B =  a -- dA. (30) 

Substituting (30) into (6) we have 

[D2(dg)] 2 = 2d 2 + ( a -  dg) 2 . (31) 

Differentiation of (31) gives the following expression for the optimum value of 
dh: 

dg = a /3 ,  

which, substituted into (31), gives 

D~ = a v ~ .  (32) 

One can proceed in similar fashion with the case of class II. As mentioned above, 
links AA ~, BB ~, and CC ~ are parallel in the optimum superimposition of this class, 
and hence, as seen from fig. 11, two parameters completely determine their lengths, 
the tilt angle ¢, and the shift parameter z = :]:dB (we choose z = q-dB if B is placed 
above i f ,  and z = - - d B  in the opposite case): 

dA = [ z - 2 c  sin ¢l,  

dB = Izl, 

dc = Iz + 2a sin(/3 - ~b)l. (33) 

This makes distance D2 (eq. (6)) a function of two variables, z and 4. Differentia- 
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C 

15 

of 

I 

d c ida 
I 

6 ¢ 

Fig. 11. 

tion of  D2 with respect to these variables gives for the opt imum superimposit ion 
of  class II: 

dA = ~la sin(/3 -- 4') + 2c sin 4'1, 

dB = ~la sin(/3 - 4') - c sin 4'[, 

dc = ~12a sin(/3 - 4') + c sin 4'1, (34) 

a sin fl(2a cos f l -  c) (35) 
tan 24' = c2 - a c  cos /3 + a 2 cos /3" 

The min imum distance D~ I for class II can be calculated from (34) and (35) by 
use of  eq. (6). A simple estimate of  the upper bound for D~ x can be obtained if one 
neglects the tilt and calculates the min imum D2 at 4' = 0. It follows from (34) that  in 
this case 

d A = d B = ~ c = ~  s i n / 3 = } h c ,  
which, substituted into eq. (6), gives 

D n ~< 2hc V/2/3. (36) 

D~ I reaches its upper bound (36) if 4' = 0, which, according to eq. (35), corre- 
sponds to isosceles triangles with a = b and c = 2a cos /3. 
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2.2.2. Chirality map o f the shape space 
Here, as in the case of the Hausdorffmeasure, we have four regions in the shape 

space, depending on which of the four minima, D~, r~U r~mA or D uIB is the global ~"2 ~ " J2  .2  , 
one. According to eqs. (9)-(12), (16), (17), (3 2), and (3 6), D~ and D~ are related by 

DI2 = ~ DL, 

D~ I ~ ~ D~, 

, 

and hence 
~(lt It 

2 ,-~ V ' ~  Xoo 

2 ~  Xoo 

(in regions I and II),  

(in regions IIIA and IIIB). 

(37) 

( 3 8 )  

It follows from eqs. (37) and (38) that the positions of the interregion boundaries 
(see fig. 7) are roughly the same for X~ and " Xoo" 

2.2.3. Symmetry of the union of enantiomorphs in their optimum superimposition 
Here, as in the case of the Doo metric, we only need to consider optimum super- 

impositions for class III. We start again with fig. 10 and eqs. (19)-(21). Substituting 
these equations into (6) gives D2 as a function of CC' link length L and rocking 
angles 0 and ft. In the optimum superimposition, partial derivatives with respect to 
these parameters equal zero, which results in the following set of equations: 

2ab sin(3' + 0 + 0') + L[b sin(,-/+ 0) + a sin 0] = 0, (39) 

2ab sin("/+ 0 + 0') + L[b sin("/+ 0') + a sin 0'] = 0, (40) 

3L + b cos(3' + 0) + b cos(')' + 0') + a cos 0 + a cos 0' = 0. 

Subtracting eq. (40) from eq. (39) yields 

+ c o s ~ ]  = 0. s i n ~ 2  0~ [b c o s ( 3 ' + 0 2  0-----~) a 0 + 0 q  

Eq. (42) has two solutions 

0 = 0 '  

and 

(41) 

(42) 

b cos 3 ' + a  
0 = -0 '  + arctan 

b sin 3' 

The first of these corresponds to the minimum of the function D2 and hence is 
the solution of choice. Thus, the union ofenantiomorphs in the D2-optimum super- 
imposition has axial symmetry. 
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2.2.4. Optimum superimposition for class 1;1land the exact solution for the most 
chiral triangle 

With condit ion 0 = 0 ~ in mind, eqs. (39)-(41) can be rearranged into 

L = -2[b cos(7 + 0) + a cos 0], (43) 

3ab sin(')' + 20) - [b cos('), + 0) + a cos O][b sin('), + 0) + a sin 0] = 0. (44) 

Eq. (44) t ransforms into a quadrat ic  equation in tan 0. The opt imum 0 thus 
found, through eqs. (43), (19)-(21) and then (6), determines the exact solution for 
DI2 nA. Similarly one can calculate D~ Im. 

We applied this scheme to find the most  chiral triangle for measure  X" The 2. 
obtained parameters  are listed in table 1 and are practically the same as for the 
Hausdor f fmeasu re  " Xoo. 

2.3. MEASURE 8' 

2.3.1. Optimum superimpositions for classes I and H 
Substitution ofeq.  (30) into (5) gives for a superimposition of  class I (fig. 1) 

Dl (dA) = dA + a ,  

f rom which it follows that  the min imum value 

D~ = a  (45) 

is reached at dA ----- 0, i.e., when vertex A is superposed on either B ¢ or C'. 
Similarly, it follows from eqs. (5) and (33) that  for a superimposit ion of  class II 

(fig. 11) 

DI(Z, ~b) = Iz - 2c sin ~b I + Izl + Iz + 2a sin(/3 - ~b)l. (46) 

Table 1 
Degree of chirality X and geometric parameters for the most chiral triangle as determined by mea- 
sures of the first and second kind. 

Measure Parameters of the most chiral 
triangle (deg) 

Kind Distance Xmax a /3 3' 
function 

Second 

First 

Doo 0.1983 21.02 43.69 115.29 
D2 0.3261 21.16 43.46 115.38 
D i 0.4304 24.29 48.58 107.13 

Do~ 0.1067 16.43 37.65 125.93 
D2 0.1724 16.90 37.35 125.35 
Dl 0.2320 17.59 40.88 121.53 
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Function (46) reaches its minimum value 

D] I = 2a sin /3 = 2hc (47) 

at ~b = 0 and z = 0, i.e., when vertices A and B are superposed on vertices A' and 
B', respectively. 

2.3.2. Chirality map of the shape space 
It follows from eqs. (9)-(12), (16), (17), (45), and (47) that 

2D i 

and hence 
I I  I I  

XI "~ 2X~. 

This means that measure X]' should produce basically the same chirality map as 
It  

Xoo" 

2.3.3. Symmetry of the union of enantiomorphs in their optimum su_perimposition 
Substitution of eqs. (19)-(21) into eq. (5) gives DI as a function of parameters 

L, 0, and 0'. Differentiation with respect to these parameters yields the following 
equations for the optimum superimposition of class III: 

La Lb sin('), + 0) = 0 (48) (1/dA + l/dB)ab s in(7+ 0 + 0 ' )  +~--~A sin 0 +-d-~B 

Lb La 
(1/dA + 1/dB)ab s i n ( f + 0 +  Y) +d-gg sin(7 + 0~) +d--BB sinY = 0. (49) 

Subtraction ofeq. (49) from eq. (48) yields 

[sin(-), + 0) sin(7 + Y)] [sin 0 sin 0'] 
b L Hff j J --0.  

The solution 0 = 0' corresponds to the minimum D1, and the corresponding super- 
imposition obviously has axial symmetry. 

2.3.4. Optimum superimposition for class III and the exact solution for the most 
chiral triangle. 

We start with the case of L = 0. Under this condition eqs. (48)-(49) give an opti- 
mum 0 of 

0 (50) 
2 2 '  

which corresponds to the superimposition in fig. 4, where dh is merely 

dA = b -  a.  (51) 

Differentiation of Dl with respect to L gives 
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d D l _  2 [ L + b  c o s ( ' ) , + 0 ) + a  cos 0 ] + 1 .  (52) 
dL dA 

According to (50) and (51), at L = 0 and optimum 0 this derivative equals 

dDldL L=0 = 1 -- 2 sin 2 . (53) 

It follows from eq. (53) that the sign of the derivative is crucially dependent on the 
parameter 7. For class IIIB, according to our definition of the shape space (sec- 
tion 2.1.2.), this parameter cannot exceed 60 °, and hence the derivative is positive. 
This means that the superimposition in fig. 4 is optimum in class IIIB since any 
increase in L will increase D1. In other words, an approximate solution (11) is the 
accurate one for the Dx metric. 

The situation is different for class Il iA, where 60 ° < 7 < 180 °, and hence the deri- 
vative (53) is always negative. This means that Dl will benefit from reducing two 
distances dA and dB at the expense of L. In order to find an exact solution for this 
case, we put derivative (52) equal to zero, which gives 

da = -2[L + b cos(7 + 0) + a cos 0]. (54) 

Substitution into eq. (19) yields 

a sin 0 - b sin(')' + 0) = v ~  [L + b cos(7 + 0) + a cos 0]. (55) 

At 0 = 0 ~, eqs. (48) and (49) transform into eq. (24) which, combined with eq. (55), 
gives the following equation for an optimum 0: 

[b sin(7 + 0) - a sin 0][x/3 b cos(7 + 0) - x/3 a cos 0 

+ b sin(7 + 0) + a sin 0] = 0. (56) 

Eq. (56) has two roots, corresponding to a minimum and maximum D1, respec- 
tively. The minimum D1 root represents the case where the first bracket in eq. (56) 
equals zero. According to eqs. (54) and (55), this is the limiting case of 
dA = dB = 0, where vertices A and B are superposed on vertices B' and A', respec- 
tively. The minimum value of D1 equals the CC' distance L and can be found as 

b 2 _ a 2 
D~ nA - - -  (57) 

C 

Eqs. (11), (45), (47), and (57) were used to calculate the parameters of the most 
chiral triangle in the D1 metric. The results obtained are presented in table 1. 

2.4. G E N E R A L  CASE:  M E A S U R E  Xg 

2.4. I. Optimum superimposition for classes Iand H 
Substitution ofeq. (30) into eq. (3) gives for a superposition of class I 

[Dp(dA)] p = 2 ~  h + (a - dA) p , 
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from which it follows that the minimum value of 

D I = a(1 + 21/(1-P)) (I-p)/p (58) 

is reached at dA = a/(21/(p-1) + 1). 
In order to estimate an upper bound for D~ I we assume ~ = 0 in eq. (33). Under 

this assumption 

--- + (2he - d A 7  

for a superimposition of class II, from which it follows that 

D~ I ~< (1 + 21~(I-P)) (1-p)]p. 2hc. (59) 

2.4.2. Chirality map of the shape space 
It follows from eqs. (9)-(12), (16), (17), (58), and (59) that 

DpI ~ 2(1 + 21~(I-P)) (I-p)/p . D~ 

D II ~,~ 2(1 + 21~(I-P)) (1-p)/p" D H , 

D~" ~ f /P.  D m , (60) 

and hence 

X~ ~ 2(1 + 21~(I-P)) (1-p)/p. X ~  (in regions I and II),  

21/Px~ (in regions IIIA and IIIB). (61) 

The ratio of factors 2(1 + 21~(I-P)) (I-p)/p and 2 lip in eqs. (60) and (61) ranges 
from 1 to 1.2 for different values ofp. One may therefore conclude that different 
metrics Dp produce similar chirality maps. 

2.4.3. Symmetry of the union of enantiomorphs in their optimum superimposition 
Substitution of eqs. (19)-(21) into eq. (3) gives Dp as a function of parameters 

L, 0, and Y (see fig. 10). Differentiation with respect to these parameters leads to 
the following set of equations for the optimum superimposition of class III: 

(~A -2 + ~-2)ab sin(7 + 0 + 0 ~) + dPA-2La sin 0 

+ a~B-2Lb sin(7 + 0) = 0, (62) 

(dPA -~ + a~B-2)ab sin(7 + 0 + 0 j) + ~A-2Lb sin(7 + 0 ~) 

+ a~B-2La sin 0 t = 0, (63) 

• A-2[L + b cos(7 + if) + a cos 0] + ~ -2  

x [ L + b  c o s ( 7 + 0 ) + a  cos 0 ~]+L p - l = 0 .  (64) 

Subtraction ofeq. (63) from eq. (62) yields 
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b[a~B -2 sin('), + 0) - C~A -2 sin(')' + 0~)] + a[~A -2 sin 0 -- d~ -2 sin 0 ~] = 0. (65) 

0 = 0' is an obvious solution of eq. (65) and corresponds to a superimposition 
with axial symmetry. 

2.4.4. Optimum superimposition for  class I I I  
With 0 = 0 ~ eqs. (62) and (63) reduce to eq. (24), and eq. (64) transforms into 

2~-2[L + b cos("/+ O) + a cos O] + L p-I = O, 

which, with eq. (19) in mind, gives 

2{a 2 + b 2 + L 2 + 2ab cos(-), + 20) + 2L[b cos(-), + O) + a cos 0]} p/2-1 

x [L + b cos('), + 0) + a cos 0] + L p-1 = 0. (66) 

Eq. (24) can be used to express L in terms of 0: 

2ab sin(')' + 20) 
L = - (67) 

b sin(-), + 0) + a sin 0 

Substitution of eq. (67) into eq. (66) gives a rational equation in tan 0. The opti- 
mum 0 thus found, through eqs. (67), (19)-(21) and then (3), determines the exact 
solution for Dp HIA. Similarly one can find an exact solution for Dp mB . 

3. Chirality measures  Xp of  the fh'st kind 

Given a normalized triangle, its chirality measure X~ of the first kind is defined, 
according to eq. (4), as the global minimum of function (3), calculated at the opti- 
mum superimposition of this triangle and an optimum achiral reference object. It 
should be noted that although the same functions (3) and (4) are used in the defini- 
tions of measures of the first and second kind, a major difference between them 
makes the definition of X~ less transparent: not only relative position, but also the 
shape and size of an achiral reference object are to be optimized in measures of the 
first kind, while they are perfectly defined in measures of the second kind where 
the enantiomorphous triangle serves as the reference object. 

An easy solution derives from the fact that, as demonstrated in section 2, the 
optimum superimposition ofenantiomorphous triangles is axially symmetric. This 
can be used to construct achiral reference objects for chirality measures X~ of the 
first kind and to relate these measures to the corresponding measures Xp' of the sec- 
ond k!nd. In order to do that, one needs to relate minimum values ©ip (first kind) 
and D~ (second kind) of distance function Dp (eq. (3)) for different classes (i = I, II, 
III) o f  optimum superimpositions. The procedure is straightforward for class III: 
one chooses the midpoints of links between neighboring vertices of enantiomorphs 
A B C  and A ' B ' C  and joins them together to form the achiral triangle A°B ° C ° (fig. 
12). Obviously, an achiral superimposition of enantiomorphs can be restored from 
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B" 

, ¢  

C" ', C ° C 

A, 

Fig. 12. 

a given superimposition of a chiral triangle ABC and an achiral triangle A°B ° C ° 
by simple reflection with respect to the symmetry axis of A°B ° C °. It follows imme- 
diately from this construction and from eq. (3) that the minimum distances for the 
oPtimum superimpositions in class III are related by 

III ll-~III (68) {Dp = ~_p . 

A similar procedure can be applied to the optimum superimpositions in class 
II. In this case, however, the symmetry axis passes through the midpoints of links 
AA', BB' and CC', (see fig. 2) and hence the achiral reference object is a degenerate 
triangle represented by the sequence A°B ° C ° of three collinear points. Here again, 
as in the case of class III 

n lr~ii (69) 

The situation is quite different in the case of the optimum superimpositions in 
class I, where the achiral reference object is merely the line segment AA' (see fig. 1). 
This segment may be considered as a degenerate isosceles triangle, with the base 
shrunken into point A'. Obviously, here 

(70) ~Dp = Dp. 
It follows from eqs. (69) and (70), and eqs. (58) and (59) that 

I II ~ p/~)p >_-a/hc > 1. 

Hence, 

[ ~ n  (71) p > ' ~ p .  

This means that X~, as the global minimum of i, ©~ s, will never equal the minimum 
I in class I. As a result, region I does not appear in the chirality map for distance ©p 

this kind of measure. 
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A schematic sketch of the chirality map for measures of the first kind, Xp, is dis- 
played in fig. 13. As shown by comparison with fig. 7, region I in fig. 7 is split 
among regions II, IIIA, and IIIB in fig. 13; consequently there is only one triple 
point T ~ for measures of the first kind. At the same time, according to (68) and (69), 
Xp in regions II, IIIA, and IIIB of fig. 7 equals Xp multiplied by a constant factor 
of 2. In the region bordered by dashed lines in fig. 13, which correspond to the 
boundary lines of region I in fig. 7, Xp/Xp < 2. Accordingly, T ~, which represents the 
most chiral triangle in terms ofx~, is located within the borders of the dashed lines 
and is shifted downward along the IIIA/IIIB boundary line, relative to T. The 
shape of  the most chiral triangle therefore depends on whether the measure is of  the 
first or of  the secondkind (see table 1). 

It should be noted that the choice of a degenerate triangle as the achiral refer- 
ence object is unavoidable since otherwise the whole of region II disappears from 
the chirality map of fig. 13. Were this to occur, the two remaining regions, IIIA and 
IIIB, would spread all the way to the x axis, the points of which represent degener- 
ate triangles. The most chiral triangle is represented by the point of intersection of 
the IIIA/IIIB boundary line with the x axis: a paradoxical result since a degenerate 
triangle is obviously achiral. 

Finally, we emphasize that the technique derived in section 2 for chirality mea- 
sures of the second kind, after minor modifications, applies equally to measures of 
the first kind. 

R 

B O 

Fig. 13. 
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4. Concluding remarks 

Computational studies of the Hausdorff chirality measure had shown [1,2] 
that, within the error limits of the calculations, the union of enantiomorphous tri- 
angles and tetrahedra is achiral under conditions of maximal overlap. In the pres- 
ent study we have presented analytical proof that under these conditions the union 
of enantiomorphous triangles is strictly achiral for the general case of a family of 
measures associated with topologically equivalent metrics, including the special 
cases of Hausdorff and Euclidean chirality measures. Giering [5] had previously 
proven that the normalized area of intersection resulting from the overlap of two 
enantiomorphous triangles (taken as non-empty sets) in E 2 is maximal only if their 
intersection is achiral. In light of these various findings, and on the reasonable 
assumption that our analysis and Giering's, though applied to triangles, is valid 
also for objects of higher dimensions, we believe that there now exists strong evi- 
dence for our conjecture [1] that the union (and hence the intersection) o f  any object 
or set and its mirror image is achiral under conditions o f  maximal overlap. 

The present study reveals that the different chirality measures of a given kind 
yield similar shapes for the extremal member of the set, i.e., for the most chiral tri- 
angle, but that this shape differs significantly for the two kinds of measure (table 
1). We emphasize that none o f  these measures yields extremal triangles that are 
degenerate; this is in contrast to other, previously investigated chirality functions, 
both of the first [4,6] and the second [7] kind, where the most chiral triangle was 
found to be infinitely flat, i.e., arbitrarily close to a line segment. Behavior of this 
type, in which a lowering of dimensionality occurs at the boundary of the shape 
space, renders the measure unsuitable in any applications to the natural sciences; in 
that sense the corresponding chirality functions are not well-behaved. 

A final remark pertains to the question raised by Fowler [8] on how one "can 
link the continuous symmetry measure" developed by Zabrodsky et al. [9] "to the 
study of chirality measures" [1 ]. The answer is that the "continuous chirality mea- 
sure" suggested by Zabrodsky et al. is a Euclidean measure of the first kind, X'2, 
and, together with the Hausdorffmeasure X~ [1,2], constitutes a particular case of 
the general family of chirality measures Xp. 
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